Global dynamics of cubic second order difference equation in the first quadrant

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global dynamics of cubic second order difference equation in the first quadrant

We investigate the global behavior of a cubic second order difference equation xn+1 = Ax3 n + Bx 2 nxn–1 + Cxnx 2 n–1 + Dx 3 n–1 + Ex 2 n + Fxnxn–1 + Gx 2 n–1 + Hxn + Ixn–1 + J, n = 0, 1, . . . , with nonnegative parameters and initial conditions. We establish the relations for the local stability of equilibriums and the existence of period-two solutions. We then use this result to give global ...

متن کامل

Global dynamics of quadratic second order difference equation in the first quadrant

We investigate the global behavior of a quadratic second order difference equation xnþ1 1⁄4 Axn þ Bxnxn 1 þ Cx 2 n 1 þ Dxn þ Exn 1 þ F; n 1⁄4 0;1; . . . with non-negative parameters and initial conditions. We find the global behavior for all ranges of parameters and determine the basins of attraction of all equilibrium points. 2013 Elsevier Inc. All rights reserved.

متن کامل

Global behaviour of a second order nonlinear difference equation

We describe the asymptotic behaviour and the stability properties of the solutions to the nonlinear second order difference equation xn+1 = xn−1 a + bxnxn−1 , n ≥ 0, for all values of the real parameters a, b, and any initial condition (x−1, x0) ∈ R .

متن کامل

STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM

In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.  

متن کامل

Global Dynamics of Certain Homogeneous Second-Order Quadratic Fractional Difference Equation

We investigate the basins of attraction of equilibrium points and minimal period-two solutions of the difference equation of the form x(n+1) = x²(n-1)/(ax²(n) + bx(n)x(n-1) + cx²(n-1)), n = 0,1, 2,…, where the parameters a,  b, and  c are positive numbers and the initial conditions x₋₁ and x₀ are arbitrary nonnegative numbers. The unique feature of this equation is the coexistence of an equilib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2015

ISSN: 1687-1847

DOI: 10.1186/s13662-015-0503-x